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Abstract  Generic computer virus detection is the
need of the hour as most commercial antivirus software
fail to detect unknown and new viruses. Motivated by
the success of datamining/machine learning techniques
in intrusion detection systems, recent research in detect-
ing malicious executables is directed towards devising
efficient non-signature-based techniques that can pro-
file the program characteristics from a set of training
examples. Byte sequences and byte n-grams are con-
sidered to be basis of feature extraction. But as the
number of n-grams is going to be very large, several
methods of feature selections were proposed in litera-
ture. A recent report on use of information gain based
feature selection has yielded the best-known result in
classifying malicious executables from benign ones. We
observe that information gain models the presence of
n-gram in one class and its absence in the other. Through
a simple example we show that this may lead to erro-
neous results. In this paper, we describe a new fea-
ture selection measure, class-wise document frequency
of byte n-grams. We empirically demonstrate that the
proposed method is a better method for feature selec-
tion. For detection, we combine several classifiers using
Dempster Shafer Theory for better classification accu-
racy instead of using any single classifier. Our exper-
imental results show that such a scheme detects virus
program far more efficiently than the earlier known
methods.
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1 Introduction

A computer virus is a code that recursively replicates
a possibly evolved copy of itself. Viruses infect a host
file or system area, or they simply modify a reference to
such objects to take control and then multiply again to
form new generations [22]. Any computer system is vul-
nerable to malicious code whether or not it is attached
to other systems. Recent Gartner report ranked viruses
and worms as top security threats [8] and detecting mali-
cious code has become one of the prime research inter-
ests in the field of information security. A majority of
commercial antivirus products rely on Signature based
virus detection and a heuristic classifier that detects new
virus. The ‘classic’ signature based detection algorithm
uses signatures of known viruses to generate detection
models. Signatures create a unique tag for each virus
so that future examples of it can be correctly classified
with a small error rate. These methods do not generalise
well to detect unknown and unseen viruses. Unknown
or new viruses will easily escape the detection by simple
defenses like code obfuscation, as their signatures are
not present in the database [5]. Moreover, as the num-
ber of known viruses increases, the size of the signature
database increases and also the time of checking a file
for virus signatures increases [13].

In order to overcome these disadvantages, data
mining approaches [25] are proposed recently for detec-
tion of computer virus. The success of data mining
techniques have been demonstrated in the context of
intrusion detection systems. The main idea is to have
a supervised classification scheme where the known
instances of virus and benign programs are considered
as a training set and a set of feature extracted from the
training set are used to build a classification model to
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profile these two classes—benign and virus instances.
Data mining approaches are based on the assumption
that viruses have certain typical characteristics in com-
mon and these characteristics are not present in benign
programs. For instance, virus writers may use some
generic virus generating toolkits to write and compile
their code and hence the viruses generated using this
toolkit have certain common features that are specific
to the toolkit, the compiler and also the programming
environment. Thus any data mining based virus scanner
is expected to be more robust. Of course, the
performance of such a method critically depends on
the set of features and on the classifier. The generic
approach is to formulate the detection problem as a
supervised classification and to decide upon a set of
features that are useful for classification. Normally
n-grams of byte sequence of the programs are consid-
ered as the basic features and several classifiers such
as IBk, TFIDF, Naive Bayes, SVM, decision trees are
studied for classification. Most often no single classifier
can yield satisfactory classification and hence there are
also attempts to combine multiple classifiers in the pres-
ent context. Recent combination frameworks based on
the learning set’s sampling (bagging, arcing, boosting) or
the features selection subsets showed an interesting way
to reduce correlation errors amongst weakened individ-
ual classifiers and then reduce the misclassification rate.
We give a brief review of the research on data mining
approach for detection of virus programs in the next
section.

In this paper we propose a very elegant method of
detection of computer viruses by extracting the com-
mon features of known virus programs. We introduce
a concept of relevant n-grams and present a new fea-
ture selection technique based on class-wise document
frequency and relevant n-grams. We make use of multi-
ple classifiers and use Dempster Shafer Theory of Evi-
dence for combining classifiers for the classification task.
We demonstrate that our feature selection measure per-
forms better than information gain, which was used in
the earlier work [11]. The motivation of the the pres-
ent work is the observation that the earlier proposals of
feature selection of n-grams do not adequately model
the profile of both the classes. We discuss this aspect
detail in the following section. Our training set consists
of two classes, virus executables class and benign exec-
utables class, where each class have 250 instances. The
viruses were simple Portable Executable (PE) infectors
with little obfuscation and do not change their code
much unlike poly/metamorphic viruses. Most of the
benign executables were taken from system32 folder
in Windows. For viruses, we used only the loader
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programs; we did not use any infected programs in our
analysis.

The rest of the paper is organised as follows. In Sect. 2
we review earlier research on data mining approach to
detect malicious executables. We observe that most of
the approaches choose byte n-grams as the features and
as there can be very large number of n-grams, several
feature selection methods are also adopted. We illustrate
these techniques using a motivational example. This
example also brings out the situations where the ear-
lier feature selection methods do not adequately model
the benign and virus classes of programs. In Sect. 3, we
introduce the concept of relevant n-grams and present
our method of feature selection. Section 4 outlines the
process of combining multiple classifiers. The experi-
mental results are discussed in Sect. 5. We show that the
proposed method performs better than the best known
method.

2 Related Work

Theoretically, the problem of detection of malicious
executables in general (and virus detection, in partic-
ular) is known to be a hard problem [4]. Several tech-
niques have been proposed in literature for detection
of malicious codes. These attempts can be classified
into two categories —signature-based and non-signature-
based.Non-signature based techniques [28] are normally
based on data mining and machine learning principles
where the detection system models behaviour of the
process or the user based on earlier-known data. The
research on malicious code detection can also be classi-
fied based on the type of malicious code that are to be
detected. Kephart et al. [10] propose the use Neural Net-
works to detect boot sector malicious binaries. Using an
ANN classifier with all bytes from the boot sector mali-
cious executables as input, it is shown that unknown
boot sector malicious executables can be successfully
identified with low false positive rate. Later, Arnold
et al. [2] apply the same techniques to Win32 binaries.
Motivated by the success of data mining techniques in
host based and network intrusion system, Schultz et al.
[19] propose several data mining techniques to detect
different types of malicious executables. In a compan-
ion paper [18] the authors develop a UNIX mail filter
that detects malicious windows executables based on
the above work. Byte sequences are used as the set
of features as machine codes are most informative to
represent executables. The RIPPER algorithm of rule
discovery and Naive Bayes classifiers are used for classi-
fication in this study. Abou-Assaleh et al.[1] observe that
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n-grams extracted from byte sequences can be used as
an effective feature. They use Common n-gram (CNG)
as the features and propose a k-NN classification for
detecting computer virus. Kolter et al. [11] indepen-
dently realise that n-grams can possibly be used as a
set of features. However, as the set of all n-grams is
very large, it is proposed to use few of them selected
based on their information gain. Kolter et al. [11] also
investigate several classification techniques, which are
implemented in WEKA [25] and boosted J48 algorithm
reportedly gave good results. We restrict our study here
only to non-signature based techniques for detection of
virus programs [10,11,19,28].

It is also interesting to note that many of these tech-
niques use byte sequences and some of these studies
propose byte n-grams as the basic features to detect mali-
cious codes. Byte n-grams are overlapping substrings,
collected in a sliding-window fashion where the win-
dows of fixed size slides one byte at a time. The concept
of byte n-gram is inspired by commonly known concept
of word n-gram. Word n-grams and character n-grams
are widely used in natural language processing, informa-
tion retrieval and text mining [3,9]. It is observed that
n-grams not only capture the statistics of substrings of
length n but implicitly represent frequencies of longer
substrings as well. N-grams have the ability to capture
implicit features of the input that are difficult to detect
explicitly. Byte n-grams can be viewed as features in the
present context when an executable program is viewed
as a sequence of bytes. Importance of byte n-gram in
detecting computer virus has been realised more than
once in the computer virology research. In 1994, a byte
n-gram-based method is used for automatic extraction
of virus signatures [10]. The major difficulty in consid-
ering byte n-grams as a feature is that the set of all byte
n-grams obtained from the set of byte strings of virus
as well as of the benign programs is very large and it is
not useful to apply classification techniques directly on
these. So restricting to a smaller set of relevant n-grams
is necessary for classification the viruses and benign
executables. There are several feature selection tech-
niques proposed in [27] and the important ones are doc-
ument frequency and information gain. In the present
context the document frequency is the number of exec-
utables in which a n-gram occurs and information gain
measures the number of bits of information obtained for
category prediction by knowing the presence or absence
of a n-gram in a program. In [11], features are chosen
to be set of all sequences of four bytes and a feature
selection method based on Information Gain is used.
N-grams were also used for malware phylogeny gen-
eration [7], where the authors attempt to build better
models.

Definition Let C be a class of executable programs. C is
a subset of the training set. The information gain of the
n-gram Ng is given by

P(VNg’ C)

vgel0,1} Ce(Ci) P(vng)P(C)

where C is one of two classes-benign or virus, vng is the
value of n-gram Ng; vNg = 1 if n-gram Ng occurs in the
program and = 0, otherwise. P(vng, C) is the proportion
of programs in C in which that n-gram Ng takes on value
VNg. P(vng) is the proportion of programs in entire train-
ing set such that n-gram Ng takes the value vyg. P(C) is the
proportion of the training data belonging to the class C.

The n-grams are sorted in decreasing order of infor-
mation gain and top L n-grams are considered for build-
ing training data, where L is the profile length.

In a different but related context [1], a feature selec-
tion method based on average term frequency is used
and the Common N-Gram analysis (CNG) method is
used. The CNG classification method relies on profiles
for class representation. During training, the data for
each class is collected and n-grams with their normal-
ized term frequencies are counted.

Definition For a given n-gram Ng and a program P, the
term frequency t(Ng, P) of Ng in P is the frequency of
occurrences of Ng in P. The normalised term frequency
is defined as M, where T is D pcc ZNgeP 7(Ng, P).

The normalised frequency of each n-gram is com-
puted with respect to both the classes of programs and
are sorted in decreasing order. Top L/2 n-grams are
selected from each class to constitute a profile of L
n-grams. In order to understand these two approaches
and to illustrate their ability to detect virus programs,
we consider following motivating example.

Example

Let us assume that the training set consists of 20
executables of which there are 10 virus programs and 10
benign programs. Let there be six n-grams Ng;,
i=1,...,6,extracted from these programs. Tables 1 and
2 give the term frequencies of the n-grams in virus and
benign programs respectively. Table 3 shows the class-
wise document frequencies of these n-grams in virus
and benign programs. In the Table 3, for example, Ng;
is present in 2 out of 10 viruse programs and in 9 of 10
benign executables (i.e. value ‘1’ means that the n-gram
is present and the value ‘0’ means that the n-gram is not
present).

The information gain for the n-gram Ngy is calculated
as follows using Eq. 1.
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Table 1 N-grams and their term frequency for virus class

Virus Ngi Ng> Ngs3 Ng4 Ngs Ngs
pl 4 0 0 0 2 1
p2 3 3 0 0 1 2
p3 0 6 0 0 1 2
p4 0 1 0 0 2 1
p5 0 0 0 0 2 1
p6 0 0 0 5 0 0
p7 0 0 5 4 0 0
P8 0 0 6 0 0 0
P9 0 0 0 0 0 0
p10 0 0 0 0 0 0

Table 2 N-grams and their term frequency for benign class

Benign Ngi Ng> Ng3 Ng4 Ngs Nge

pll
pl2
pl3
pl4
pl5
plé
pl7
pl8
p19
p20

OSOR R R ANDR WRN
O ONWR N - =
N == W W~ O oo
SO OODWO R NNDO
SOOI WOO
SO DD ODOON WA

Table 3 N-grams and their class-wise document frequencies

Class

Value Ng1 Ng» Ngs3 Nga Ngs Nge

W< <
S = O
— O 00 N
N 0 3 W
[OSIEN BN
A~ O 0N
~ W L
~N WA

P(VNg] =1, C= V)
P(vng, =1)P(C=V)
P(vng, =0,C=V)

IG(Ng1) = P(vng, =1,C=V)log

1

P(vng, =1,C=B)
P(vng, =1)P(C=B)
P(vng, =0,C=B)
P(vng, =0)P(C=B)

+P(vNg, =1,C=B)log

+P(vng, =0,C=B)log

Substituting the probability values that we can be cal-
culated from Table 3, we get

IG(Ngy) = 2 log— + 8 log —— 204 ) log —%
1 10 9 1" 10 11 1
10 () 10 3 10 53
15
+ 35 log 5y = 26368
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In the similar manner the information gain for all 6
n-grams can be calculated as IG(Ngz) = 2.3823,1G(Ng3)
= 2.5916,1G(Ngs) = 2.2490,1G(Ngs) = 2.0606, and
IG(Nge) = 2.1332.

The top 4 n-grams with high information gain are
Ng1,Ng3, Ngy and Ng4. We see (Table 1) that Ngs and
Nge appear more frequently in large proportion of virus
programs than any other n-grams. Thus these two n-
grams are more appropriate to represent the virus pro-
grams but are ignored by the information gain based
feature selection.

In the CNG method, the best n-grams are selected
based on their class wise average term frequency. Table 1
lists the term frequencies of the n-grams in the virus class
and we see that highest normalised term frequencies
correspond to Ngz and Ngj. Similarly, from Table 2, the
top 2 n-grams for benign class are Ng; and Ngs. If we
compute the common n-grams for the above example
and select four most frequent (in terms of normalised
term frequency) n-grams, two from each class, then we
get Ng3 and Ngp from virus class and Ng; and Ngs from
benign class.

3 Relevant n-grams

In this section we discuss our proposal for feature selec-
tion. We assume that we have a set of executables that
are known to be viruses and another set of executables
that are known to be benign. Our aim is to identify a
set of features that are common to the set of viruses and
similarly another set of features that are common to the
benign executables. Let D be the training set containing
a set of virus programs V and a set of benign programs
B,ie., D = B UYV. Our feature extraction method is
based on n-grams and the feature selection measure is a
variant of document frequency. We introduce here two
novel concepts—relevant n-grams for a class and class-
wise document frequency.

Definition For n-gram Ng, the document frequency §
(Ng, P) of Ng with respect to a program P is 1 if Ng is
present in P and 0, otherwise. The classwise document
frequency of Ng with respect to a class C is §(Ng,C) =
> pec 8(Ng, P). In other words, the classwise document
frequency is the number of executable programs in C that
contain Ng.

While the document frequency is a kind of global
measure the classwise document frequency is a local
measure with respect to a class. The main advantage
of classwise document frequency is that we can analyze
each class independently. Moreover, the number of dis-
tinct n-grams in a program is far smaller than that for the
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entire training set and hence it saves memory require-
ments as we deal with only n-grams of one class at a
time. We propose a novel concept of relevant n-grams
for a class D of executable programs. For each execut-
able program, we find the set of all n-grams and let Ng’
be the set of all n-grams for a program ¢ € D.

Definition The set of all n-grams for D, Ng(D) is Uep
Ng'. We assume that the elements of Ng(T) are arranged
in the non-increasing order of class-wise document fre-
quency for each class V and B. Thus we have two non-
increasing lists, 5(Ng;, V) and §(Ngi, B). Let V, (B;) be
the set of top k(= L/2) n-grams selected from the set
8(Ngi, V) (8(Ngi, B), respectively). We define Ngi (D) as
the set of relevant n-grams with respect to D and is V,UB,.

We give in Fig. 1 the flowchart for the relevant
n-grams selection.

Example (contd.)

Table 3 gives the classwise document frequency of the
n-grams. We see that top 2 n-grams of each class based
on class-wise document frequency are Ngi, Ng2, Ngs and
Nge. Based on the justification given above, this is a bet-
ter combination of n-grams to adequately represent both

the classes.
| Virus Files | | | | Benign Files I II

v v

A

Extract distinct Extract distinct
N-grams and find N-grams and find
Class-wise Class-wise
Document Document
frequency of each frequency of each
n-gram n-gram

Sort the n -grams in
descending order of
Class wise

Document frequency

v

v
Select the top
k n-grams

Relevant
n-grams

Sort the n -grams in
descending order of
Class wise

Document frequency

v
Select the top
k n-grams

Relevant
n-grams

Combined relevant
n-grams (Duplicates
to be eliminated)

Fig. 1 Flow chart for selecting relevant n-grams set from virus
and benign executables” hexdump data

Once the set of relevant n-grams are selected, we use
the vector-space model of Information Retrieval to rep-
resent the set of programs D in terms of Ngi(D). A
program is represented as a vector of terms 1,12, ...,tn
where #;(1 < i < m) is a binary (0-1) value denoting
the single or multiple occurrences of ith n-gram Ngy (D)
in the program. Thus when a program is viewed as a
vector each unique relevant n-gram corresponds to a
dimension. The value 1 represents the occurrences of the
n-gram in the program and its absence is represented by
0. Our training set consists of a set of labelled vectors—
the vector representation of the set of programs together
with the respective class label [virus(V) or benign(B)].

4 Classification methodology

As we observed in the previous section, the detection
problem reduces essentially to a supervised classifica-
tion problem. Several algorithms exist [14] for super-
vised classification like Support Vector Machine,
decision tree, neural networks etc. Different classifiers
reveal different possibilities for separating the data. In
order to harness the complementary information and
merits of individual classifiers, we can combine the clas-
sifiers to improve the performance of classification. The
main motivation for combining classifiers is that the
sets of patterns misclassified by the different classifi-
ers would not necessarily overlap. There are several
approaches for combining classifiers [6]. Three broad
groups of combining classifiers are parallel combining
of classifiers computed for different feature sets, stacked
combining of different classifiers computed for the same
feature space, and combining weak classifiers trained on
modified versions of the original dataset [6]. In the pres-
ent work we use Dempster Shafer Theory of Evidence
for combining classifiers [29].

4.1 Dempster—Shafer theory of evidence (D-S theory)

The D-S Theory is an alternative to traditional prob-
abilistic theory for the mathematical representation of
uncertainty [17]. An important tenet of this theory is
the combination of evidence obtained from multiple
sources and the management of conflict between them.
D-S Theory starts by assuming a Universe of Discourse
0, also called a Frame of Discernment, which is a set of
mutually exclusive alternatives.

A function m : 2¢ — [0,1]is called a basic probability
assignment if it satisfies m(¢) = 0and > 4, m(A) = 1.

The summary of m(B) for all subsets B C A becomes
the total belief in A and Bel(A) is a measure of the total
belief committed to A.
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Bel(A4) = D" m(B) @)

BCA

Two independent evidences expressed as two basic
probability assignments n1; and my can be combined
into a single basic assignment 1 by D-S rule of com-
bination as given below.

> miBymy(C)
BN C=A
. A#E
my 2(A) = 1- Z my(B)yma(C)
Bﬂ C=¢
| 0, A=¢

4.2 Combining classifiers using D-S theory

The D-S rule of combination works better in combining
evidences but does not give intuitive results when the
conflict among evidences is more [15]. In such a case,
we can discount the sources first and then combine the
resulting functions with D-S rule of combination (or
an alternative rule) using a discounting function [17,21].
Shafer applies the discounting function to each specified
Belief.

Let 1 — « be the degree of confidence of a particular
belief function, A, where 0 < o; < 1 and i is an index
used to specify the particular discounting factor for a
particular belief measure. Bel,,(A) then represents the
discounted belief function [20] given by:

Bely, (A) = (1 — a;)Bel(A) (3)

We then average all the belief functions associated
with set A (Bely, 1(A), Bely, 2(A), Bely, 1, (A)) to obtain
aggregated belief measure Bel.

Bel(A) = %(Bela,l (A) + -+ + Belyn(A)) “4)

for all subsets A of the universal set X.

In the present context, each classifier k£ of K classifi-
ers for a given query instance x, gives vector BEL; (x) =
(Belg (x),...,Belgi(x),...,Belg(x)), where Belg;(x) is
the probability that x belongs to class i according to clas-
sifier k. We follow the ‘discount and combine’ model and
calculate the total belief for each class using the formula
Bel;(x) = Zf agiBelg;(x). The instance x belongs to class
i for which Bel;(x) value is maximum.

There are three methods for finding the discount fac-
tors, ay; [12], and one method among them is learning
the discount factors based on the use of training set and
the minimization of an error criterion. Let the data set
be £ = {(yn,xn),n = 1,...,N}, where y, is the class
value and x, is a vector representing the attribute val-
ues of the nth instance. Let Ly, .., £; be almost equal
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parts of £. Define £; and £ = £ — L; to be the test
and training sets for the jth fold of a /-fold cross-valida-
tion. Given K learning algorithms, which we call level-0
generalizers 23], let M,(;’ ) ,fork =1,...,Kbethe model
obtained by invoking the kth algorithm on the data in
the training set £, These are called level-0 models. If
model /\/l/(;] ) is used to classify an instance x in £ and
Pyi(x) denote the probability of the ith output class, and
the vector

Pin = (Prai(xn), ., Pri(xpn), . . ., Prr(xn)) Q)
gives the model’s class probabilities for the nth instance,
assuming that there are I classes. Assembling together
the class probability vectors from all K models, along
with the actual class:

Lev =0 PinsesPrns---»Prn)y, n=1,...,N. (6)
These are the level-1 data. We use linear regression
learning algorithm that we call the level-1 generalizer
to derive from these data a model M for y as a function
of Pins--+sPrns>---»Prn)-

If the original classification problem has [ classes, it
is converted into / separate regression problems, where
the problem for class ¢ has instances with response equal
to one when they have class £ and zero otherwise. The
linear regression for class ¢ is simply

K
LR (x) = > g Pre(x). @)
k

‘We choose the coefficients ay; to minimize

2
Z Z (Yn - zakZP/({zj)(xn)) .

j (yn,x,,)eﬁj k

This method of combining classifiers and finding dis-
count factors can be readily implemented in WEKA
using the StackingC metaclassifier with linear regres-
sion option. Stacking is a way of combining multiple
models that have been learned for a classification task
[26]. It uses a higher level model to combine lower level
models for greater accuracy. The higher level model
can be a Naive Bayes, Multi-response linear regres-
sion (MLR) etc. We combine Support Vector Machine
(SVM), Instance-based Learner (IBK), and decision
tree in WEKA using StackingC with linear regression
option. To implement decision tree, we used J48 algo-
rithm available in WEKA. The reason for choosing these
classifiers is that they are entirely different from each
other in their approach of classification.
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5 Experimental results

There is no benchmark data set available for the detec-
tion of malicious executables unlike intrusion detection.
Data sets (i.e. viruses) collected from the website VX
Heavens [24] were used by [1,11]. We collected 250
viruses from [24] and 250 benign executables from our
lab. All the executables were in Windows PE format.
Most of the benign executables were taken from sys-
tem32 folder in Windows. Each executable in the data-
set is converted to hexadecimal codes in ASCII format.
We extracted n-grams by sliding a window of different
lengths one byte at a time. We experimented for different
value of length n as 2, 3 and 4. The classwise document
frequency for each class is determined for each n-gram
during the process of extraction of n-grams. The n-grams
are sorted in non-increasing order of their class-wise
document frequency and top kn-grams are selected,
where k is called profile length of each class. These k
n-grams selected from each class are combined to form
relevant n-grams set of cardinality K with duplicates
removed. We experimented with K between 100 and
500. This final set of n-grams are the relevant n-grams
that are useful in classifying the viruses and benign
executables.

All the classification algorithms are implemented in
WEKA [25]. We used the default values given by
WEKA for all classifiers except for IBK, where k value is
changed to 5 and used stratified tenfold cross-validation.

We compare our work with that of [11], where the
authors obtained good results in the context of using
n-grams for detecting malicious executables. In [11], the
experiments are done on two data sets, one with 476
malicious and 561 benign executables and the other set
contains 1971 malicious and 1651 benign executables.
Information gain is used as feature selection measure.
After extracting all n-grams along with the information
gain value, the n-grams are sorted in decreasing order
of information gain and top k n-grams are taken and
vector space model is formed. Out of several classifi-
ers, it is claimed that the best results are obtained for
boosted J48 algorithm. In order to compare our work,
we implemented their technique of using information
gain as feature selection measure and J48 algorithm as
classifier on our data.

In Data Mining, Receiver Operating Characteristics
(ROC) curves are used to compare classification capa-
bility of different algorithms. The more the area under
the ROC curve of an algorithm, the more robust and
better it is in classification.

Figure 2a and 2b give the results that compare class-
wise document frequency with information gain, used
in [11], with the same classifier, boosted J48. From the

(a)

True Positive Rate

m— Class—wise Document Frequency|
Information Gain
n

0 0.2 0.4 0.6 0.8 1
False Positive Rate

09} '// (b) |
08l ]

0.7 ]

0.6 1 J

0.5H 1

041 ]

True Positive Rate

0.3 J

0.1 r./ m— Class—wise Document Frequency|
Information Gain
0 L l l l
0 0.2 0.4 0.6 0.8 1

False Positive Rate

Fig. 2 ROC graphs to compare class-wise document frequency
and information gain: a n-gram length is 2 and profile length is
100; b n-gram length is 4 and profile length is 100

visual inspection of these two graphs and taking area
under the ROC curves into consideration, it is clear that
class-wise document frequency approach outperforms
that of information gain. One reason might be that in
case of information gain, most of the relevant n-grams
with highest information gain are from the benign pro-
grams. This makes the data mining algorithms to model
only the benign programs and there are no represen-
tative n-grams for virus programs. But with class-wise
document frequency we do not face this problem as we
are combining the relevant n-grams from both the clas-
ses i.e. viruses and benign programs. This ensures that
the data mining algorithms have adequate information
of both the classes to correctly model both the classes.
Also the advantage of class-wise document frequency
is that we can analyze each class independently. This
saves memory requirements as we will be dealing with
only n-grams of one class at a time.
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Fig. 3 ROC graphs to compare our approach with that of [11]
a n-gram length is 2 and profile length is 100; b n-gram length is
3 and profile length is 100

Figures 3a and 4b give the overall result of our method
compared to information gain as feature selection mea-
sure and boosted J48 classification algorithm as in [11].
The graphs are for different values of n-gram length and
profile length of a class. In terms of area under ROC
curves, it is clear from the graphs that our approach is
better in all cases.

When it comes to advanced computer viruses like
polymorphic viruses, static analysis methods do not
work. To tackle these viruses, static analysis methods
should be combined with dynamic analysis methods for
efficient detection. For example, polymorphic virus con-
sists of three components—decryption routine, muta-
tion engine and virus body. Since the mutation engine
and the virus body are encrypted and decryption
routine is different in each replication, it is not possible
to directly apply any static analysis method (including
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Fig. 4 ROC graphs to compare our approach with that of [11]
a n-gram length is 4 and profile length is 100; b n-gram length is
4 and profile length is 500

our method) to detect this virus. Instead we can use a
dynamic analysis technique (like sandboxing) that trick
a polymorphic virus into decrypting and revealing itself
[16]. On this decrypted virus we can use the static anal-
ysis method. Here we assume that a polymorphic virus
must decrypt before it can execute normally.

6 Conclusion

In this paper, we proposed a new feature selection mea-
sure, class-wise document frequency, and introduced
relevant n-grams in the context of using n-grams for
computer virus detection. For classification, we used
Dempster-Shafer Theory of Evidence to combine clas-
sifiers—SVM, decision tree and IBK. Our approach out-
performed the earlier work done in this context.
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The n-gram approach lacks semantic awareness.

Because of this it is very difficult to analyse the rele-
vant n-grams that we obtain. Our future work will be
to develop a semantic aware method and also include
different kinds of malicious and benign executables in
our training data. Also we are exploring the use of vari-
able-length n-grams in this context.
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